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AN ASYMPTOTIC EXPANSION FOR 
THE INCOMPLETE BETA FUNCTION 

B.G.S. DOMAN 

ABSTRACT. A new asymptotic expansion is derived for the incomplete beta 
function I(a,b,x), which is suitable for large a, small b and x > 0.5. This 
expansion is of the form 

IP(a + b) 
0 

I(a, b, x) Q(b, --y log x) + xl Tn (b, x)/y'+ 
]P(a)]P(b) n=O 

where Q is the incomplete Gamma function ratio and -y = a + (b - 1)/2 . This 
form has some advantages over previous asymptotic expansions in this region 
in which Tn depends on a as well as on b and x. 

1. INTRODUCTION 

The incomplete beta function I(a,b,x) is defined by [1, p.269, Eq. 6.6.2 and 
p.944, Eq. 26.5.1] 

(1.1) I (a, b, x) = 
F (ab)jt ta- (l-t)'- dt, a>Ob>O. 0<x<1. 

While best known for its applications in Statistics, it is also widely used in many 
other fields. 

Owing to the wide variation in behavior in different regions of the parameter 
space, efficient code to evaluate I(a, b, x) involves a number of different subroutines 
for different parts of this parameter space [3]. In this paper we shall confine our 
interest to a subdomain of the parameter space in which a is large, b is small and x 
is close to 1.0. Indeed if b < 1.0, then I(a, b, x) varies most rapidly as x approaches 
1.0. This region has to be treated very carefully. Asymptotic expansions suitable 
for this subdomain have been derived by Molina [8] and Temme [9]. Molina's result 
was rederived by Wise [10, 11] and DiDonato and Morris [3]. These asymptotic 
expansions have the form ZAn /-yn, where -y is either a [7] or a + (b - 1)/2 [3, 8, 
10], and in which the expansion coefficients An depend on all three parameters 
a, b and x. The expansion to be described here has the same general form, but 
the expansion coefficients An depend only on b and x. The advantage of this new 
expansion is that it is cleaner and that an algorithm based on it can be more easily 
tuned for particular accuracy requirements and for particular parameter ranges. 
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The derivation here starts in the same way as that for the expansion derived by 
Wise [10] and can in fact be derived from it. First we show a simple derivation 
of an asymptotic expansion for the ratio of two Gamma functions derived first by 
Fields [5], see also Frenzen [6] and Luke [7, pp.33-34]. The method shown here in 
?2, while equivalent to that of Luke, is a special case of the method applied to the 
incomplete beta function in ?3. 

2. ASYMPTOTIC EXPANSION OF F(a + b)/F(a) 

In this section we shall derive an asymptotic expansion which we shall need later 
on, which provides an efficient method of calculating F(a + b)/F(a) when a ? b. 
We start from the Beta function B(a, b), 

F(a)]F(b) 0;t-(-0-d~l -tle ) d (2.1) B(a, b) = r(a)F b) =j t-1 (I - = j'd e-'1-etbd 

- 0 j t-1 (sinh(t/2) b-) 

where -y = a + (b - 1)/2. We now expand [sinh(t/2)/(t/2)]b-1 in powers of t2 and 
use Watson's Lemma to obtain the asymptotic expansion 

(2.2) ~~~F(a) 10 IF (b + 2n) I2 
(2.2) F(a+ b) yb ECn Z F(b) 

n=0 

where Cn are the expansion coefficients of [sinh(t/2)/(t/2)]b-1. The coefficients 
Cn can be expressed in terms of the generalized Bernoulli polynomials [7, p.34], 
Cn = B' -b((1 - b)/2)/(2n)! . They can be evaluated using the recurrence relations 
of the generalized Bernoulli polynomials, by using computer algebra to work out 
the expansion of [sinh(t/2)/(t/2)]b-1, or following DiDonato and Morris [3], by 
differentiating 

oo b-1 I oo 

(2.3) [sinh(t/2)/(t/2)]b-1 = ( hnt2n)b = E Cnt2n, 
o o 

multiplying by sinh(t/2)/(t/2) in series form and equating powers of t. This leads to 
a recursion formula for Cn . Actual expressions in terms of b can easily be obtained 
by computer algebra. If we write dn = 12ncn/z, where z is b - 1, the first few dn 
are 
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dl = 1/2, 

d2= z/8 - 1/20, 

d3 = z2/48 - z/40 + 1/105, 

d4 = z3/384 - Z2/160 + 101z/16800 - 3/1400, 

d5 = z4/3840 - z3/960 + 61Z2/33600 - 13z/8400 + 1/1925, 

d6 = z5/46080 - z4/7680 + 143Z3/403200 - 59Z2/112000 

(2.4) + 7999z/19404000 - 691/5255250, 

d7 = Z6/645120 - z5/76800 + 41z4/806400 - 11Z3 /96000 

+ 5941z2/38808000 - 2357z/21021000 + 6/175175, 

d8 = Z7/10321920 - Z6/921600 + 37z5/6451200 - 73z4/4032000 

+ 224137z3/6209280000 - 449747Z2/10090080000 

+ 52037z/1681680000 - 10851/1191190000. 

3. ASYMPTOTIC EXPANSION OF I(a, b, x) 

Following Wise [10] and DiDonato and Morris [3], we transform the expression 
for I(a, b, x) in (1.1) in the same way as in (2.1) to obtain 

(3.1) I(abx) = 
I(a)<(bbFj) 

e z tt (sinh t/2 ) dt 

where as before -y = a + (b - 1)/2. From (3.1), Wise [10] and DiDonato and Morris 
[3] proceeded by expanding [sinh(t/2)/(t/2)]b-1 as in ?2 to obtain 

(3.2) I(a, b, x) F ( (arb) 17bE F(b + 2n)Q(b + 2n, -ry log X)cnl/-2n 

where Q(c, z) is the incomplete Gamma function ratio [2] and [1, p.260 and p.941], 
and the coefficients cn are defined in ?2. 

In their subroutine BGRAT, DiDonato and Morris [3] use (3.2) directly, with 
Q(b + 2n, --y log x) and cn being determined recursively. 

We can proceed by using the recurrence relations for Q(c, z) to express 
Q(b + 2n, --y log x) in terms of Q(b, --y log x). This gives 

(3.3) I (a, b, x) Q(b, -y log x) + R(a, b, x), 

where we have used (2.2) to cancel out the factors multiplying Q. The other 
term R(a, b, x) is a double summation over n and the 2n residual terms obtained 
by expressing Q(b + 2n, -'-ylogx) in terms of Q(b, -'-ylogx). We can obtain the 
asymptotic expansion we require by reordering this sum. We shall however proceed 
differently. First we write (3.1) in the form 

(3.4) I(abx) = F(a)F(b)[fo e t((2 sinh(t/2))b - tb- )dt 

+ 
f 

e-yttb-1 dt 
log x 
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The first of these integrals is integrated by parts twice to give 

(3.5) 2 f e [ 1t(2 sinh(t/2) b t- tbl)dt 

+ [[2 sinh(t/2)]b 1 - tb 1 +-d ([2 sinh(t/2)]l1 - tb1)1 

In the integral in (3.5) we now subtract the second term in the expansion of 
[2 sinh(t/2)]b-1 and add a corresponding integral so that the integral in (3.5) be- 
comes 

00 _ d2 
ef og dt2 ([2 sinh(t/2)]b-1 - tbi1 - c1tb+l) dt 

(3.6) log x 
+ F(b) c1 J e -yttb-1 dt. 

F~~b) -log x 

The first of these integrals is then integrated by parts twice producing two further 
integrated terms evaluated at t = -log x and an integral of a fourth derivative. 
In this integral, a further term from the expansion of [2 sinh(t/2)]b-l, c2tb+3 is 
subtracted from the differentiated part and a corresponding integral added on sep- 
arately. This procedure is continued indefinitely. The separate integrals starting 
from the ones on the right of (3.4) and (3.6) add together to give Q(b, --y logx) as 
in (3.3) so that 

(3.7) I (a, b, x) Q(b, --y log x) + ( (b) X E Tn (b, )/-y+ v 

where 

(3.8) Tn(b,x) = d ([2 sinh(t/2)] b1 - /E ct2m+b- l1 

S dtn (tE Cmt2m+b-C1mt| ) 
m=n/2+1 1= o 

where n/2 in the summation is to be interpreted as the largest integer < n/2 as in 
integer division. The quantities Tn satisfy the simple recurrence formulae 

d d bF F(2n +b) 
(3.9) T2n+l dtT2n, = dt2n-1-c tb-) 

(3.9) -~dtn t2 
n 

- - F(b) 
We can express Tn (b, x) directly in terms of b and x, for example, 

To(bx) = (1/ X- X)b-1 - (logX)b-l. However, for x close to 1.0, evaluation 
of Tn in this way can lead to large rounding errors on subtraction, and so Tn(b, x) 
is better evaluated from its power series expansion in t. The radius of convergence 
for this expansion is t 4.35464, which corresponds to x = 0.0128. Therefore, for 
x > 0.5 , t is well within this radius of convergence and so Tn (b, x) converges quite 
rapidly. It follows also that the largest errors in Tn occur for the smallest x-values. 

From (2.4) we see that for 0 < b < 1, cl is negative, so that the first two terms 
in the series of (3.7) are negative; c2 is positive so that the next two terms are 
positive, and so on. Thus, if we take an even number of terms in (3.7), we would 
expect the error to not exceed the contribution of the first two neglected terms. 

We should note that the expansion (3.7) remains valid for b > 1 and may well 
form the basis for a useful algorithm for evaluating I(a, b, x) for b < a. 
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4. IMPLEMENTATION 

To design an algorithm based on (3.7) and (3.8), it is useful to have an approx- 
imate idea of the relative magnitudes of Q(b, --y log x) and R(a, b, x). From the 
asymptotic expansion of Q(b, z), [1, p.263] , we can see that in the region where 
this expansion is applicable, R(a, b, x)/Q(b, --y log x) is cl (log x)2, and thus that 
the magnitude of this ratio decreases as x increases. Extensive computer experi- 
ments show that even in the region where the asymptotic approximation for Q is 
not valid, this magnitude continues to decrease as x increases. For x > 0.5, the 
ratio R/Q < (b - 1)/49.95. Thus, for To sufficiently many terms should be taken 
to ensure convergence to the required accuracy for the smallest value of x required. 
For Tn when n > 0, the required accuracy will be determined by the value of -y 
being considered. It is relatively straightforward to obtain bounds for Tn when 
n > 0, and therefore to determine how many of the Tn to take. 

In a simple implementation in Ada in 15-digit floating-point arithmetic, with 
eight terms in To and T1, seven terms in T2 and T3, etc., up to one term in T14 
and T15, that is including all the terms up to c8, in the expansions of To up to 
T15, a maximum relative error of 3.8E - 14 was obtained for the sum of the Tn 
terms in tests over 2,530 points in the parameter subdomain 15.0 < a < 39.0, 
0 < b < 1 and 0.5 < x < 1. This maximum error was obtained at the smallest 
values of a,- b and x. It was found that the error decreased as a increased, as b 
increased and as x increased. This error would contribute an amount not exceeding 
7.7E - 16 to the relative error of the algorithm as a whole. Inclusion of the terms 
involving c9 in To to T11 reduced the greatest relative error in the sum of the Tn 
terms to 1.2E - 15. The error in the above tests was determined by comparing 
the approximate value with values for I(a, b, x) and Q, determined from series 
expansions evaluated using an accurate arithmetic package produced by Doman, 
Pursglove and Coen [4]. The Ada implementation of this algorithm was timed in 
comparison with an Ada implementation of BGRAT [3]. It was found that the part 
calculating the correction term R(a, b, x) took about 1/15 th of the time taken by 
the recursion part of BGRAT. 

In practice, because of the small size of R relative to Q, the actual error produced 
by this algorithm is dominated by the error arising from Q. In the asymptotic region 
for Q(a, z), it can be seen from the asymptotic expansion [1, p.263] that if Q' is the 
rate of change of Q with respect to z, Q'/Q 1 in magnitude. The relative error 
6Q/Q will then be (Q'/Q)6(-ylogx), or -y times the absolute error of logx. This 
can be the major contribution to the total error of the algorithm. For example, for 
a = 55.1, b = 0.5 and x = 0.5, an absolute error in logx of 1.0E - 16 would give 
a relative error 6Q/Q of 5.5E - 15. The actual relative error obtained from the 
algorithm of 1.067E - 14 is of the order one would expect from this argument. 
One can also see that as a increases this effect will become more pronounced. 

A simple implementation of this algorithm in Ada is available by E-Mail to 
anyone who is interested. 
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